
Comp 11 Lectures

Mike Shah

Tufts University

July 17, 2017

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 1 / 34

Please do not distribute or host these slides without prior permission.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 2 / 34

Object Oriented Programming 2

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 3 / 34

Comp 11 - Pre-Class warm up

Object-Oriented Programming is
comparable to lego bricks. You
have blocks, you build bigger pieces
from smaller ones, and generally
you can work in teams more easily
by separating out tasks.

An important part of building a
lego set was reading the
blueprint(interface or spec), and
then planning out the
implementation.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 4 / 34

Lecture

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 5 / 34

Frances Allen

Figure 1: Frances Allen was the first female computer scientist to win the Turing
Award in 2006. She is best known for her contributions in optimizing compilers in
the programming language FORTRAN. Her seminal paper in 1996 on Program
transformation laid many of the foundations down for this work.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 6 / 34

Speaking of Compilers

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 7 / 34

The Compiler

It has been a while since we have talked about the compiler.

We previously left off with knowing that it is a tool that turns our
program into 1’s and 0’s.

Let’s uncover another layer of what is going on.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 8 / 34

Object Files

You might have noticed these .o files that occasionally pop up.

In fact, maybe you have seen something like this on a tutorial.
clang++ -c myfile.cpp

This generates what is known as an object file.

An object file describes at a low level what code is available.

We can investigate our object file further using some special tools:
llvm-nm-3.8 myfile.o

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 9 / 34

Object Files Put to work

That’s neat, but I cannot execute an object file. An object file is not
an executable(.exe or a.out) file, it is simply machine code.

But what we can do, is link multiple object files together!

So now if we split our code into multiple files, we can link together all
of the .o files.

There is an actual program called a linker that performs this step.

A simple way to do this in one step if we have multiple .cpp files
(which sort of hides the linker from us).

clang++ myfile.cpp myfile2.cpp myfile3.cpp -o myExecutable

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 10 / 34

Compilation Picture

Figure 2: Compilation process

https://courses.cs.washington.edu/courses/cse378/97au/help/

compilation.html
Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 11 / 34

https://courses.cs.washington.edu/courses/cse378/97au/help/compilation.html
https://courses.cs.washington.edu/courses/cse378/97au/help/compilation.html

Object-Oriented Programming Separating the Interface
from the Implementation

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 12 / 34

Code Maintenance

The reason we are learning about linking object files, is because we
are going to be separating code into different parts.

Now we will be able to write bigger software–many small modules are
generally easier to maintain than one large one.

We will also be able to share reusable components with other
projects! (Whether that means the source, or the .object files)

It is generally easier to debug and test a smaller chunk of code.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 13 / 34

Header Files - The Interface

When we include code(#include <iostream>), we are essentially
copying and pasting code from a .h file file into that file.

A .h file is a ”Header” file. We have included vector, stack, and other
header files previously.

Each of these header files generally contains a class (sometimes more
than one), with a description of how to use it.

By description, I mean a specification with function definitions in the
class. No actual loops, if-statements, or program logic.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 14 / 34

Header Files - Example

1 c l a s s myClass {
2 p u b l i c :
3 // Con s t r u c t o r
4 myClass () ;
5 // De s t r u c t o r
6 ˜myClass () ;
7 // No code , j u s t the r e t u r n type and any pa ramete r s

needed
8 vo i d pr in tMsg (i n t t imes) ;
9

10 } ;

Listing 1: A header file myClass.h

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 15 / 34

C Preprocessor

When we include code, we are essentially copying and pasting code
from a .h file file into that file, and then that file will get compiled.

Header files that we reference from C++ have <>’s, header files that
we include from our computer contain ””’s

Additionally, we can include some header guards (using C-preprocessor
syntax) to prevent us from including a file multiple times.

If we do not do this, then we will get ’symbol multiply defined’ or
other ambiguity errors from the compiler (i.e. it won’t know which
definitions to use).

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 16 / 34

C Preprocessor Language

Items with a pound symbol in front of them do not get compiled into
code.

Instead, they guide the compiler as what to do while we are compiling
our source code.

More information is here on how to control the preprocessor.
http://www.cplusplus.com/doc/tutorial/preprocessor/

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 17 / 34

http://www.cplusplus.com/doc/tutorial/preprocessor/

Header Guards Example

1 // I f symbol not d e f i n e d i n p r e p r o c e s s o r
2 // Then d e f i n e i t .
3 // Now tha t i t i s d e f i n ed , the above check w i l l
4 // f a i l , and our code w i l l n eve r ge t a c c i d e n t a l l y
5 // i n c l u d e d tw i c e !
6 #i f n d e f MYCLASS H
7 #de f i n e MYCLASS H
8

9 c l a s s myClass {
10 p u b l i c :
11 // Con s t r u c t o r
12 myClass () ;
13 // De s t r u c t o r
14 ˜myClass () ;
15 // No code , j u s t the r e t u r n type and any pa ramete r s

needed
16 vo i d pr in tMsg (i n t t imes) ;
17 } ;
18 #end i f // End our p r e p r o c e s o r #i f n d e f b l o ck !

Listing 2: Notice this time how we added our file
Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 18 / 34

Implementation

Now that we have the interface, we have to write the implementation.

This typically means creating a .cpp file with the same name.

We then implement each function, and we precede it with the class
name and two colons (This is C++ grammar).

void myClass::printMsg(int times) { // some code }
Now our member functions are neatly organized away.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 19 / 34

Implementation Example

1 #i n c l u d e ”myClass . h” // F i r s t i n c l u d e our i n t e r f a c e
2 #i n c l u d e <i o s t r eam> // Any o th e r heade r f i l e s we need f o r

imp l ementa t i on
3

4 myClass : : myClass () {
5 // Nothing to do i n c o n s t r u c t o r
6 }
7 myClass : : ˜ myClass () {
8 // Nothing to do i n d e s t r u c t o r
9 }

10 // Make s u r e r e t u r n type and pa ramete r s match
11 vo i d myClass : : p r in tMsg (i n t t imes) {
12 f o r (i n t i =0; i < t imes ; ++i) {
13 s t d : : cout << ” He l l o from myClass \n” ;
14 }
15 }

Listing 3: Writing myClass.cpp

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 20 / 34

Usage of our Header

1 #i n c l u d e <i o s t r eam>
2 #i n c l u d e ”myClass . h” // Use doub l e quote s
3 // The f i l e path to our f i l e i s r e l a t i v e to where
4 // we comp i l e our code .
5

6 i n t main () {
7

8 myClass m;
9

10 m. pr in tMsg (5) ;
11

12 r e t u r n 0 ;
13 }

Listing 4: Usage of myClass.cpp

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 21 / 34

Compilation of everything together

clang++ myClass.cpp main.cpp -o myProgram

Why is the header file not included?

Remember, it does not need to be. Header files are essentially copy
and pasted in

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 22 / 34

Operating overloading

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 23 / 34

Power of abstraction

As we abstract our code into smaller pieces, it becomes easier to
think about more abstractions or functionality.

In this case, we are going to add more power with what is known as
operator overloading.

This means we are going to add meaning to operators like =,+,-,*, ¡¡,
[], for our own custom data types(clases and structs).

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 24 / 34

Revisiting copy constructor

As we remember, with a copy constructor C++ makes one for us by
default.

If we are working with pointers, we need to perform a deep copy, and
write our own.

We saw how we could do this when we initialize an object, but we
may want to just assign anywhere in our code an object to another.

In order to do this, we will overload the ’=’ operator.

(In fact, when we do this, we are also overriding the assignment
operator that C++ tries to generate for us too.)

So in general, you will always write two copy constructors.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 25 / 34

this keyword

We have another new C++ keyword. The this keyword, refers to the
current instance of an object.

We use this keyword only within a class. It is implicitly available.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 26 / 34

this keyword usage

1 myClass & myClass : : myClass = (cons t myClass &t)
2 {
3 // Check f o r s e l f a s s i gnment (e . g . a vo i d do ing A = A)
4 i f (t h i s != &t) {
5 // per fo rm our deep copy i n t h i s code b l o ck
6 }
7

8 // We r e t u r n a p o i n t e r to our c u r r e n t o b j e c t .
9 // Why? Look at our r e t u r n type , and t h i n k about

10 // what we a r e mod i f y i ng . We a r e mod i f y i ng our c u r r e n t
11 // i n s t a n c e o f an o b j e c t .
12 r e t u r n ∗ t h i s ;
13 }
14

15 // Well , we need to r e t u r n
16 // myClassA = myClassB ;

Listing 5: Overloaded Assignment operator

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 27 / 34

templating

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 28 / 34

templating when splitting up files

In the activity and lab today, you are going to notice the interface and
implementation are templated.

Remember though, templates allow us to use every type, but when we
have many files separated, the compiler cannot infer the types easily.

So we have to manually tell it which types we will use.

To do so, put at the bottom of your .cpp the instantiations (template
defintion) you would like to use.

Example for using int: template class CompVector<int>;

Example for using float: template class CompVector<float>;

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 29 / 34

In-Class Activity

http:

//www.mshah.io/comp/11/activities/activity11/activity.pdf

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 30 / 34

http://www.mshah.io/comp/11/activities/activity11/activity.pdf
http://www.mshah.io/comp/11/activities/activity11/activity.pdf

Activity Discussion

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 31 / 34

Review of what we learned

(At least) Two students

Tell me each 1 thing you learned or found interesting in lecture.

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 32 / 34

5-10 minute break

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 33 / 34

To the lab!

Lab: http://www.mshah.io/comp/11/labs/lab11/lab.pdf
1

1You should have gotten an e-mail and hopefully setup an account at
https://www.eecs.tufts.edu/~accounts prior to today. If not–no worries, we’ll take
care of it during lab!

Mike Shah (Tufts University) Comp 11 Lectures July 17, 2017 34 / 34

http://www.mshah.io/comp/11/labs/lab11/lab.pdf
https://www.eecs.tufts.edu/~accounts

	Tables and Figures
	Object Oriented Programming 2
	Lecture

	Speaking of Compilers
	Object-Oriented Programming Separating the Interface from the Implementation
	Operating overloading
	templating
	Activity Discussion
	5-10 minute break

