
www.mshah.io/fosdem18.html

Abstract (Last updated 2/01/18)
Abstract: In this talk, Michael Shah (“Mike”) will be presenting an introduction to the LLVM Compiler Infrastructure. A discussion of what
LLVM is, who is using it, and why you might be interested in using LLVM will be presented during the first part of the talk. The second
part of the talk will show interactive examples, taking us through installation to the point where we build and run our first function pass.
We will build on top of our first function pass, to begin outputting some program metrics about programs. Mike will also be presenting
some steps on how to proceed further and what resources are available for working with LLVM.

Materials:
● Please bring a laptop with LLVM 5.0 setup if you want to follow along
● Otherwise materials will be posted to www.mshah.io

Resources:
● Downloading and setting up LLVM: http://llvm.org/docs/GettingStarted.html#checkout
● A really good introduction guide: http://adriansampson.net/blog/llvm.html

Contact: mshah.475@gmail.com
Twitter: @MichaelShah

1

http://www.mshah.io
http://llvm.org/docs/GettingStarted.html#checkout
http://adriansampson.net/blog/llvm.html
mailto:mshah.475@gmail.com

www.mshah.io/fosdem18.html

Terminology (Open in a second browser if you like)
● LLVM - The name of the project (not an acronym)
● IR - Intermediate representation (Human-readable, 3 address, assembly like

representation)
● Bitcode (.bc) - LLVM binary format of the IR
● JIT - Just-In-Time Compiler
● SSA - Single Static Analysis

2

http://llvm.org
http://cs.lmu.edu/~ray/notes/ir/
http://llvm.org/docs/BitCodeFormat.html
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Static_single_assignment_form

Introduction to LLVM
(Tutorial)
Mike Shah, Ph.D.

@MichaelShah | mshah.io
February 4, 2018

60-75 Minutes for talk (plenty of time for questions)
3

https://twitter.com/MichaelShah
http://mshah.io

www.mshah.io/fosdem18.html

Demo Time! Right from the start!
● So you know what to pay attention to!

○ In case you (or maybe I) walked into the wrong room by accident!
○ (Or if you are deciding to commit to an hour long talk online in the distant future)

● For those attending this talk live
○ Take a moment to introduce yourself to someone next to you .

● demo1.sh - Print functions from program
● demo2.sh - Print out stats
● demo3.sh - Print out direct function callees
● demo4.sh - Instrument code

4

Who Am I?
by Mike Shah

● Currently a lecturer at Northeastern University
in Boston, Massachusetts. I teach courses in
computer systems, computer graphics, and
game engine development.

● My research is in performance tools using
static/dynamic analysis and software
visualization.

● I like teaching, guitar, running, weight training,
and anything in computer science under the
domain of graphics, visualization, concurrency,
and parallelism.

● www.mshah.io
5

http://www.mshah.io

Who Am I?
by Mike Shah

● Currently a lecturer at Northeastern University
in Boston, Massachusetts. I teach courses in
computer systems, computer graphics, and
game engine development.

● My research is in performance tools using
static/dynamic analysis and software
visualization.

● I like teaching, guitar, running, weight training,
and anything in computer science under the
domain of graphics, visualization, concurrency,
and parallelism.

● www.mshah.io
6

http://www.mshah.io

Who Am I?
by Mike Shah

● Currently a lecturer at Northeastern University
in Boston, Massachusetts. I teach courses in
computer systems, computer graphics, and
game engine development.

● My research is in performance tools using
static/dynamic analysis and software
visualization.

● I like teaching, guitar, running, weight training,
and anything in computer science under the
domain of graphics, visualization, concurrency,
and parallelism.

● www.mshah.io
7

http://www.mshah.io

Who Am I?
by Mike Shah

● Currently a lecturer at Northeastern University
in Boston, Massachusetts. I teach courses in
computer systems, computer graphics, and
game engine development.

● My research is in performance tools using
static/dynamic analysis and software
visualization.

● I like teaching, guitar, running, weight training,
and anything in computer science under the
domain of graphics, visualization, concurrency,
and parallelism.

● www.mshah.io
8

http://www.mshah.io

www.mshah.io/fosdem18.html

This is an introduction to LLVM
We have some specific goals

1. Figure out what is LLVM
2. Understand how to obtain LLVM

a. (This can be a major bottleneck for students)

3. Do a little example with Clang
4. Understand how to produce the demos I have already shown

9

www.mshah.io/fosdem18.html

Goals for Tomorrow
Because you’ll be ready to think about more solutions

● Know some resources available to continue growing
● Know some projects to try in the future

10

www.mshah.io/fosdem18.html

Goals for Tomorrow
Because you’ll be ready to think about more solutions

● Know some resources available to continue growing
● Know some projects to try in the future
● Be able to run through these slides again with confidence and excitement!

11

12

www.mshah.io/fosdem18.html
Slides and code are at the following location

What is LLVM

13

www.mshah.io/fosdem18.html

LLVM (Formerly known as Low Level Virtual Machine--but it’s more!)

● Started at The University of Illinois in 2000.
● Chris Lattner is the lead architect
● Backed by companies like Apple, Google, Microsoft,

Intel, and more!
● And of course--open source!

http://nondot.org/sabre/

14

http://www.nondot.org/sabre/
http://nondot.org/sabre/

www.mshah.io/fosdem18.html

LLVM (Formerly known as Low Level Virtual Machine--but it’s more!)

● Started at The University of Illinois in 2000.
● Chris Lattner is the lead architect
● Backed by companies like Apple, Google, Microsoft,

Intel, and more!
● And of course--open source!

http://nondot.org/sabre/

15

What is it that makes LLVM so
great that programmers are

paying attention to it?

http://www.nondot.org/sabre/
http://nondot.org/sabre/

www.mshah.io/fosdem18.html

The Secret Recipe
● The exact details are listed in the research paper:

https://dl.acm.org/citation.cfm?id=977673

16

What is it that makes
LLVM so great that
programmers are

paying attention to it?

https://dl.acm.org/citation.cfm?id=977673

www.mshah.io/fosdem18.html

Chris Lattner’s big idea
● Lattner had been thinking about compilers while doing his graduate work.
● Job of the compiler:

○ Generate a high level language to machine code

17sources: LLVM The early Days Developer Meeting talk | AOSA Book

http://www.nondot.org/sabre/2013-11-07-LLVMDevMtg-LLVMEarlyDays.pdf
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

Chris Lattner’s big idea
● Lattner had been thinking about compilers while doing his graduate work.
● Job of the compiler:

○ Generate a high level language to machine code

18

C++
Source

sources: LLVM The early Days Developer Meeting talk | AOSA Book

http://www.nondot.org/sabre/2013-11-07-LLVMDevMtg-LLVMEarlyDays.pdf
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

Chris Lattner’s big idea
● Lattner had been thinking about compilers while doing his graduate work.
● Job of the compiler:

○ Generate a high level language to machine code

19

Lexers &
parsers

sources: LLVM The early Days Developer Meeting talk | AOSA Book

http://www.nondot.org/sabre/2013-11-07-LLVMDevMtg-LLVMEarlyDays.pdf
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

Chris Lattner’s big idea
● Lattner had been thinking about compilers while doing his graduate work.
● Job of the compiler:

○ Generate a high level language to machine code

20

Perform
standard
optimizations

sources: LLVM The early Days Developer Meeting talk | AOSA Book

http://www.nondot.org/sabre/2013-11-07-LLVMDevMtg-LLVMEarlyDays.pdf
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

Chris Lattner’s big idea
● Lattner had been thinking about compilers while doing his graduate work.
● Job of the compiler:

○ Generate a high level language to machine code

21

Code
generator

sources: LLVM The early Days Developer Meeting talk | AOSA Book

http://www.nondot.org/sabre/2013-11-07-LLVMDevMtg-LLVMEarlyDays.pdf
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

Chris Lattner’s big idea
● Lattner had been thinking about compilers while doing his graduate work.
● Job of the compiler:

○ Generate a high level language to machine code

22sources: LLVM The early Days Developer Meeting talk | AOSA Book

Machine
Code
10101010
10101010

http://www.nondot.org/sabre/2013-11-07-LLVMDevMtg-LLVMEarlyDays.pdf
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

The big idea | Around the year 2000
● JIT compilers were and continue to gain traction

○ A virtual machine compiles code online
○ This online compilation means performing optimizations over and over again

● So Lattner et al. big idea was to perform optimizations at compile-time that
could do the heavy lifting.

○ Perhaps using some low level virtual machine

23

www.mshah.io/fosdem18.html

The big idea | Around the year 2000
● JIT compilers were and continue to gain traction

○ A virtual machine compiles code online
○ This online compilation means performing optimizations over and over again

● So Lattner et al. big idea was to perform optimizations at compile-time that
could do the heavy lifting.

○ Perhaps using some Low Level Virtual Machine

24

www.mshah.io/fosdem18.html

The Optimizer
● So in the middle of our compiler pipeline, the optimizer (or optimization of

code) is the focus.

25

Optimizer

www.mshah.io/fosdem18.html

The optimization stage of compilers
● Typically programs are optimized by manipulating an intermediate

representation (IR) of the high level language.
○ The intermediate representation (IR) is more ‘regular’ structurally

■ That means it is easier to analyze and manipulate.
● (Just think about how many ways you can write and interpret the same

program in a high-level language)

26

www.mshah.io/fosdem18.html

The optimization stage of compilers
● Typically programs are optimized by manipulating an intermediate

representation (IR) of the high level language.
○ The intermediate representation (IR) is more ‘regular’ structurally

■ That means it is easier to analyze and manipulate.
● (Just think about how many ways you can write and interpret the same

program in a high-level language)

27

Example of what IR instructions look like

source: https://llvm.org/docs/LangRef.html

https://llvm.org/docs/LangRef.html

How to get LLVM

28

How to get LLVM
(And all the tools)

29

How to get LLVM

30

I am actually going to run
through this section very quick!

Use it as a reference for how to
setup and run examples from

this slide deck

How to get LLVM

31

 The LLVM project evolves at a
good pace.

That is why you will want to
know how to build from source

to get the latest changes.

www.mshah.io/fosdem18.html

Where the instructions always will be

32

● http://llvm.org/docs/GettingStarted.html#checkout

http://llvm.org/docs/GettingStarted.html#checkout

www.mshah.io/fosdem18.html

Downloading LLVM 5.0

33

● For this talk, I am using and have tested the code with LLVM 5.0
● This tutorial is for an x86 based Ubuntu 16 machine

○ A similar process should work on Mac
■ (Windows users may need some different tools, I have not built LLVM on windows)

● Tools you will need
○ svn
○ Cmake
○ Make
○ A C compiler (Mine is GNU 5.4.0)

www.mshah.io/fosdem18.html

Create a directory on your desktop

34

● I typically append a date to this directory

www.mshah.io/fosdem18.html

Subdirectories

35

● Within the folder
○ A build directory where our compiled LLVM tools will

go
■ (i.e. all the binaries)

○ A source directory where all of the LLVM source files
live.

www.mshah.io/fosdem18.html

From a Terminal
1. svn co https://user@llvm.org/svn/llvm-project/llvm/tags/RELEASE_500/final llvm
2. cd llvm/tools
3. svn co http://llvm.org/svn/llvm-project/cfe/tags/RELEASE_500/final clang
4. cd clang/tools # (To be clear, you are now in llvm/tools/clang/tools)
5. svn co http://llvm.org/svn/llvm-project/clang-tools-extra/tags/RELEASE_500/final extra
6. cd ../../../../llvm/projects # (To be clear, you are now in llvm/projects)
7. svn co http://llvm.org/svn/llvm-project/compiler-rt/tags/RELEASE_500/final compiler-rt
8. cd ../../.. (You are now in your desktop directory)
9. mkdir build (if you have not already done so)

10. cd build (You are now in your build directory)
11. cmake -DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_TARGET_ARCH=X86

-DCMAKE_BUILD_TYPE="Release" -DLLVM_BUILD_EXAMPLES=1
-DCLANG_BUILD_EXAMPLES=1 -G "Unix Makefiles" ../source/llvm/

12. 'make -j 8' (from within the build directory to start the process) 36

www.mshah.io/fosdem18.html

From a Terminal
1. svn co https://user@llvm.org/svn/llvm-project/llvm/tags/RELEASE_500/final llvm
2. cd llvm/tools
3. svn co http://llvm.org/svn/llvm-project/cfe/tags/RELEASE_500/final clang
4. cd clang/tools # (To be clear, you are now in llvm/tools/clang/tools)
5. svn co http://llvm.org/svn/llvm-project/clang-tools-extra/tags/RELEASE_500/final extra
6. cd ../../../../llvm/projects # (To be clear, you are now in llvm/projects)
7. svn co http://llvm.org/svn/llvm-project/compiler-rt/tags/RELEASE_500/final compiler-rt
8. cd ../../.. (You are now in your desktop directory)
9. mkdir build (if you have not already done so)

10. cd build (You are now in your build directory)
11. cmake -DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_TARGET_ARCH=X86

-DCMAKE_BUILD_TYPE="Release" -DLLVM_BUILD_EXAMPLES=1
-DCLANG_BUILD_EXAMPLES=1 -G "Unix Makefiles" ../source/llvm/

12. 'make -j 8' (from within the build directory to start the process) 37

Now get lunch/dinner/breakfast
depending on speed of your cpu.

www.mshah.io/fosdem18.html

How will we know
it worked?
● Check your build/bin directory
● It should look something like

this
● Note that for the examples,

clang++, and other tools are
referenced from here!

○ If your system already has
clang++ installed from a package
manager, it may have a different
version!

38

How to get LLVM

39

(Expect ~15-45 or more minutes
to build from source depending

on your cpu and internet
connection)

Assumption: We all have a
working LLVM at this point

www.mshah.io/fosdem18.html

Our first example | Emitting LLVMs intermediate form

● We can output and actually look at LLVM’s intermediate form.
● We are going to use the ‘clang++’ compiler

○ clang and clang++ are frontends for the C/C++ language.
○ The code they generate targets the LLVM intermediate form.

■ Let us try!

40

www.mshah.io/fosdem18.html

Our first example | Emitting LLVMs intermediate form

● Here is some code we can use
○ hello.cpp

41

www.mshah.io/fosdem18.html

Compile and run

42

www.mshah.io/fosdem18.html

Compile and run

Again, make sure you are using the correct version of clang++ that we built!

43

www.mshah.io/fosdem18.html

Our goal: Get an intermediate
representation

Then we can talk more about
this step:

Now we can use clang++ to emit LLVM IR

44

www.mshah.io/fosdem18.html

Now we can use clang++ to emit LLVM IR

45

www.mshah.io/fosdem18.html

Now we can use clang++ to emit LLVM IR

● Compiler arguments explained
○ -S -- only run preprocessor and compilation steps
○ -emit-llvm -- Use the LLVM Representation for assembler and object files

(Use clang++ -help to see options)

46

www.mshah.io/fosdem18.html

Aside: Clang++, isn’t this an LLVM talk?
● The news my friends is that LLVM has expanded since the early 2000s!
● LLVM is an umbrella of tools

47

LLVM Tools

48

www.mshah.io/fosdem18.html

LLVM Tools - clang/clang++
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 49

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

50

So clang or perhaps other tools
can work with this “LLVM”

What a second Mike!

Yes

No

51

So clang or perhaps other tools
can work with this “LLVM”

What a second Mike!

Yes

No

www.mshah.io/fosdem18.html

Modularity

● A key feature is that language frontends can all target the same IR
● The optimizer can optimize that IR
● And the code generator can just the same target many other targets

52sources: AOSA Book

http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

Modularity

● A key feature is that language frontends can all target the same IR
● The optimizer can optimize that IR
● And the code generator can just the same target many other targets

53sources: AOSA Book

Okay, now let us take a closer
look at that IR

http://www.aosabook.org/en/llvm.html

[Pop Quiz] What does this function do?

54

[Pop Quiz] What does this function do?

55

Guesses from
the audience?

[Pop Quiz] What does this function do?

56

Well it is
named
“add1”

[Pop Quiz] What does this function do?

57

There are 2
i32

arguments

[Pop Quiz] What does this function do?

58

i32 = int

[Pop Quiz] What does this function do?

59

Every
function
has a

starting
point

[Pop Quiz] What does this function do?

60

We store a
result of an

‘add’
operation

[Pop Quiz] What does this function do?

61

Then return the result as an int

[Pop Quiz] What does this function do?

62

If you can read assembly (or
even C!) you can understand

LLVM
Intermediate Representation

LLVM’s Secret Sauce

63

www.mshah.io/fosdem18.html

LLVM IR

64

● The LLVM IR can be targeted by many languages (we have discussed that)
○ It is fairly readable
○ It is also fairly writeable, considered a first-class language!

■ It is well-defined! (You have an alternative to targeting ‘C’ as your IR language :))

● Other takeaways
○ The IR is strongly typed (e.g. i32 or even with pointers such as i32*)
○ There are an infinite number of registers

■ You did not see a finite amount of registers like %rax, %rdx, %r15 if you are use to x86
■ Rather, anything that starts with ‘%’ is a temporary register

■ IR uses Single Static Assignment (SSA) form.
● Aides in program analysis and compiler optimizations

○ Constant Propagation
○ Dead Code Elimination
○ etc.

sources: AOSA Book

https://en.wikipedia.org/wiki/First-class_citizen
https://en.wikipedia.org/wiki/Static_single_assignment_form
http://www.aosabook.org/en/llvm.html

www.mshah.io/fosdem18.html

(Quick Aside: SSA example from wikipedia)
https://en.wikipedia.org/wiki/Static_single_assignment_form

65

Not
SSA

Uses
SSA

https://en.wikipedia.org/wiki/Static_single_assignment_form

www.mshah.io/fosdem18.html

(Quick Aside: SSA example from wikipedia)
https://en.wikipedia.org/wiki/Static_single_assignment_form

66

Not
SSA

Uses
SSA

Quickly notice we
can eliminate an
extra variable

https://en.wikipedia.org/wiki/Static_single_assignment_form

www.mshah.io/fosdem18.html

(Again, more examples from AOSA book from Lattner himself)

67

http://www.aosabook.org/en/llvm.html

Using Clang++ and Generating IR

68

www.mshah.io/fosdem18.html

Example 1 | hello.cpp

69

● Returning to our example of ‘hello world’
● This command generated a .ll file (two lower-case L’s).

○ .ll files are the ‘textual’ form of LLVM’s IR.

(Note ubuntu users: if the above failed, try adding -fno-use-cxa-atexit link)

http://stackoverflow.com/questions/30119020/build-smplayer-to-llvm-ir-and-run-by-lli

www.mshah.io/fosdem18.html

And here it is:

70

www.mshah.io/fosdem18.html

Pause -- Really take a second to look at the IR
What jumps out at you in this snippet?

71

Audience,
what stands

out?

www.mshah.io/fosdem18.html

My Findings

72

● Source filename
● Data layout
● Target Triple
● Functions, Structure Types
● Lots of % signs - These are

registers (Remember the
thing about SSA?)

● Other important things (not in this IR--phi
nodes)

● Attributes
● type information! Cool--better than

assembly!
● Meta data (At the end with the “!”)

http://llvm.org/docs/LangRef.html#data-layout
http://llvm.org/docs/LangRef.html#target-triple
http://llvm.org/docs/LangRef.html#functions
http://llvm.org/docs/LangRef.html#structure-types
http://llvm.org/docs/LangRef.html#i-phi
http://llvm.org/docs/LangRef.html#i-phi
http://llvm.org/docs/LangRef.html#function-attributes

www.mshah.io/fosdem18.html

Targeting different backends
● Source filename
● Data layout
● Target Triple
● Functions, Structure Types
● Lots of % signs - These are

registers
● Other important things (not in

this IR--phi nodes)
● Attributes
● type information! Cool--better

than assembly!
● Meta data (At the end with the

“!”)

73

Looks like good
information to have
for this stage
(which we will not
get to today)

http://llvm.org/docs/LangRef.html#data-layout
http://llvm.org/docs/LangRef.html#target-triple
http://llvm.org/docs/LangRef.html#functions
http://llvm.org/docs/LangRef.html#structure-types
http://llvm.org/docs/LangRef.html#i-phi
http://llvm.org/docs/LangRef.html#function-attributes

www.mshah.io/fosdem18.html

Targeting different backends
● Source filename
● Data layout
● Target Triple
● Functions, Structure Types
● Lots of % signs - These are

registers
● Other important things (not in

this IR--phi nodes)
● Attributes
● type information! Cool--better

than assembly!
● Meta data (At the end with the

“!”)

74

Are you enjoying the readability
of IR yet?

Good news, machines like IR
too

http://llvm.org/docs/LangRef.html#data-layout
http://llvm.org/docs/LangRef.html#target-triple
http://llvm.org/docs/LangRef.html#functions
http://llvm.org/docs/LangRef.html#structure-types
http://llvm.org/docs/LangRef.html#i-phi
http://llvm.org/docs/LangRef.html#function-attributes

www.mshah.io/fosdem18.html

LLVM Tools - lli
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 75

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

www.mshah.io/fosdem18.html

The IR is very assembly like -- very readable!
● In fact the machine can read it, and the machine can directly execute the IR

using it's Just-in-time (JIT compile for current architecture) execution engine.
● Let’s do it now using lli (“L L I”)
● What do you see?

○ Program should execute -- even though you did not see executable!
○ LLI can directly execute IR!

● (If you’re on Ubuntu 16.04--you may need an additional flag)
○ ./../llvm_build/bin/clang++ -S -emit-llvm hello.cpp -fno-use-cxa-atexit 76

http://llvm.org/docs/CommandGuide/lli.html

www.mshah.io/fosdem18.html

The IR is very assembly like -- very readable!
● In fact the machine can read it, and the machine can directly execute the IR

using it's Just-in-time (JIT compile for current architecture) execution engine.
● Let’s do it now using lli (“L L I”)
● What do you see?

○ Program should execute -- even though you did not see executable!
○ LLI can directly execute IR!

● (If you’re on Ubuntu 16.04--you may need an additional flag)
○ ./../llvm_build/bin/clang++ -S -emit-llvm hello.cpp -fno-use-cxa-atexit 77

IR has a binary form called
bitcode (.bc).

Binary data will be more
compact and thus to run through

a JIT!

http://llvm.org/docs/CommandGuide/lli.html

www.mshah.io/fosdem18.html

LLVM Tools - llvm-as
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 78

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

www.mshah.io/fosdem18.html

Let’s convert .ll to a .bc file | llvm-as
The llvm assembler converts the textual (or readable) IR to bitcode and now we
have “hello.bc”.

79

www.mshah.io/fosdem18.html

Same result, as expected!

80

www.mshah.io/fosdem18.html

lli executes bitcode (binary format of IR)
My claim is the JIT engine can execute more efficiently (Why?).

81

www.mshah.io/fosdem18.html

lli executes bitcode (binary format of IR)
My claim is the JIT engine can execute more efficiently (Why?).

^binary representation of the textual .ll format we previously saw. A little more
compressed, smaller file size.

82

www.mshah.io/fosdem18.html

lli executes bitcode (binary format of IR)
My claim is the JIT engine can execute more efficiently (Why?).

^binary representation of the textual .ll format we previously saw. A little more
compressed, smaller file size.

83

Eventually we may want the
assembly for our target machine

to build an executable

www.mshah.io/fosdem18.html

LLVM Tools - llc
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 84

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

www.mshah.io/fosdem18.html

The full circle -- compile our IR to assembly (.s file)
Run llc on our .bc file which creates an assembly file (hello.s)

85

www.mshah.io/fosdem18.html

The full circle -- compile our IR to assembly (.s file)
Run llc on our .bc file which creates an assembly file (hello.s)

86

hello.s

www.mshah.io/fosdem18.html

The full circle -- compile our IR to assembly (.s file)
A wide variety of targets are available for you to generate assembly code.

87

www.mshah.io/fosdem18.html

The full circle -- compile our IR to assembly (.s file)
A wide variety of targets are available for you to generate assembly code.

88

At this point in the talk, we have
played with IR and gotten
familiar with some tools.

We have not utilized the
optimizer, (i.e. Lattner’s big

idea)

www.mshah.io/fosdem18.html

LLVM Tools - opt
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 89

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

www.mshah.io/fosdem18.html

Lets run opt | ./../opt hello.ll --time-passes

90

www.mshah.io/fosdem18.html

Passes with ‘opt’
● Opt is the ‘optimizer’
● It works by making several

passes through a module of
code looking for opportunities to
‘optimize’ the code.

● There exists several ways to
‘pass’ through the code and
gather information or make code
changes.

91

www.mshah.io/fosdem18.html

Passes with ‘opt’
● Opt is the ‘optimizer’
● It works by making several

passes through a module of
code looking for opportunities to
‘optimize’ the code.

● There exists several ways to
‘pass’ through the code and
gather information or make code
changes.

92

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

93

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

94

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

95

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

96

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

97

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

98

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Different Types of Passes in LLVM
● Levels of Granularity

○ Module Pass - Can think of this as a single source file
○ Call Graph Pass - Traverses a program bottom-up
○ Function Pass - Runs over individual functions
○ Basic Block Pass - Runs over individual basic blocks within a function
○ (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

● Analysis Passes versus Transform pass
○ Analysis Pass - Computes information that other passes can use for debugging
○ Transform Pass - Mutates the program.

■ i.e. A side effect occurs, which could invalidate other passes!

99

Our next task:

Learn how to analyze IR with
passes. This can lead toward

paths of:

1. Code optimization
2. Code understanding

3. etc.

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Goal - Print all of the Functions in a program
● What do we need? (Question for the audience)
● a.) Module Pass - Can think of this as a single source file
● b.) Call Graph Pass - Traverses a program bottom-up
● c.) Function Pass - Runs over individual functions
● d.) Basic Block Pass - Runs over individual basic blocks within a function
● e.) (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

100

http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Goal - Print all of the Functions in a program
● What do we need? (Question for the audience)
● a.) Module Pass - Can think of this as a single source file
● b.) Call Graph Pass - Traverses a program bottom-up
● c.) Function Pass - Runs over individual functions
● d.) Basic Block Pass - Runs over individual basic blocks within a function
● e.) (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

101

Guesses from
the audience?

http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Goal - Print all of the Functions in a program
● What do we need?
● a.) Module Pass - Can think of this as a single source file
● b.) Call Graph Pass - Traverses a program bottom-up

● c.) Function Pass - Runs over individual
functions

● d.) Basic Block Pass - Runs over individual basic blocks within a function

● e.) (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

102

http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

www.mshah.io/fosdem18.html

Goal - Print all of the Functions in a program
● What do we need?
● a.) Module Pass - Can think of this as a single source file
● b.) Call Graph Pass - Traverses a program bottom-up

● c.) Function Pass - Runs over individual
functions

● d.) Basic Block Pass - Runs over individual basic blocks within a function

● e.) (Immutable Pass, Region Pass, MachineFunctionPass - Less important for today)

103

Maybe I would accept
other answers as well, but
“Function Pass” is the
easiest route

http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-callgraphsccpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-functionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-basicblockpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-immutablepass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-regionpass-class
http://llvm.org/docs/WritingAnLLVMPass.html#the-machinefunctionpass-class

Writing Our First Function Pass

104

www.mshah.io/fosdem18.html

We will be working in: llvm/lib/Transforms/Hello/Hello.cpp

105

● This is given to you when you download LLVM
○ (You can learn how to add more passes here)

http://llvm.org/docs/WritingAnLLVMPass.html

www.mshah.io/fosdem18.html

(A visual if anyone setup Codeblocks)

This is given to you when
you download LLVM (You
can learn how to add
more passes here)

106

http://llvm.org/docs/WritingAnLLVMPass.html

www.mshah.io/fosdem18.html

107

Okay, here is
hello.cpp

It is a FunctionPass

www.mshah.io/fosdem18.html

108

(This code is included
with LLVM)

www.mshah.io/fosdem18.html

www.mshah.io/fosdem18.html

The piece we
care about for
now

www.mshah.io/fosdem18.html

Building our hello pass
● Navigate to the build directory
● In the lib/Transforms/Hello

folder you’ll find a make file
● type ‘make’
● Any changes we have made

will build.

111

www.mshah.io/fosdem18.html

Our pass is then compiled in build/lib/ as LLVMHello.so

112

www.mshah.io/fosdem18.html

Run our first pass with opt on hello.bc

113

opt tool which
we have used

before

www.mshah.io/fosdem18.html

Run our first pass with opt on hello.bc

114

We load the
library which
contains our

passes

www.mshah.io/fosdem18.html

Run our first pass with opt on hello.bc

115

Path to our
LLVMHello
pass library

www.mshah.io/fosdem18.html

Run our first pass with opt on hello.bc

116

The particular
function pass

we want to run

www.mshah.io/fosdem18.html

Run our first pass with opt on hello.bc

117

Our input file
(.bc or .ll file)

www.mshah.io/fosdem18.html

Run our first pass with opt on hello.bc

● Neat--we see all of the functions!

○ Or rather, we have one ‘main’ function in our program.

118

Anatomy of a “Pass”

119

www.mshah.io/fosdem18.html

piece of code
that does the
work

www.mshah.io/fosdem18.html

We are not
‘mutating code’
so return false.

www.mshah.io/fosdem18.html

Inherit from
the
‘FunctionPass’
class

www.mshah.io/fosdem18.html

Register the
pass. This is
how the pass is
built

www.mshah.io/fosdem18.html

i.e. how I knew
what to type in
the comand line
in our example

www.mshah.io/fosdem18.html

125

Congratulations on
writing/running your

first pass

LLVM is properly
configured, on to

more analysis

Static Analysis
Goal of Static Analysis: What information/bugs/performance

errors can we uncover before we run the program.

Pros: Gives us full coverage of program
Cons: No real runtime data, overly conservative

126

www.mshah.io/fosdem18.html

Our Second pass -- This time we collect some program stats

1. It will print the function name
2. It will count basic blocks and

instruction counts.

127

www.mshah.io/fosdem18.html

Our Second pass -- This time we collect some program stats

1. It will print the function name
2. It will count basic blocks and

instruction counts.
3. We’ll use this new sample source

code -- or even better use one of
your own!

128

www.mshah.io/fosdem18.html

Compile and Test loops.cpp and use loops.ll on -hello pass

1. Compile program to IR
a. ./../clang++ -S -emit-llvm loops.cpp
b. Test opt with our old pass (note we can just use the .ll version for this sample)

i. ./../opt -load ./../../lib/LLVMHello.so -hello < loops.ll > /dev/null

129

www.mshah.io/fosdem18.html
The Stats Pass source code

michaeldshah.net/LLVM/Intro/hello.cpp

130

Okay, here is our
second pass

It is a FunctionPass
that collects stats

http://michaeldshah.net/LLVM/Intro/hello.cpp

www.mshah.io/fosdem18.html
The Stats Pass source code

michaeldshah.net/LLVM/Intro/hello.cpp

131

Here is where we will accumulate the basic
blocks and instructions within our function

http://michaeldshah.net/LLVM/Intro/hello.cpp

www.mshah.io/fosdem18.html
The Stats Pass source code

michaeldshah.net/LLVM/Intro/hello.cpp

132

Here notice, that within a function, we can
iterate through its basic blocks, and every
instruction within each basic block

http://michaeldshah.net/LLVM/Intro/hello.cpp

www.mshah.io/fosdem18.html
The Stats Pass source code

michaeldshah.net/LLVM/Intro/hello.cpp

133

And finally we
output this
information

http://michaeldshah.net/LLVM/Intro/hello.cpp

www.mshah.io/fosdem18.html

(Don’t forget to save, and rebuild our pass)

134

www.mshah.io/fosdem18.html

Results of pass 2 (with loops.ll)
● ./../opt -load ./../../lib/LLVMHello.so -hello2 < loops.ll > /dev/null

135

www.mshah.io/fosdem18.html

Results of pass 2 (with loops.ll)
● ./../opt -load ./../../lib/LLVMHello.so -hello2 < loops.ll > /dev/null

136

Same library,
but different
pass that’s it!

www.mshah.io/fosdem18.html

Results of pass 2 (with loops.ll)
● ./../opt -load ./../../lib/LLVMHello.so -hello2 < loops.ll > /dev/null

137

Observe here, same pass
runs on every function.
There is no “memory” here
of previous runs. Need a
data structure, analysis
pass, or perhaps “module
pass”

www.mshah.io/fosdem18.html

Results of pass 2 (with loops.ll)
● ./../opt -load ./../../lib/LLVMHello.so -hello2 < loops.ll > /dev/null

● Let’s add more!
● What can we do with instruction information?

138

www.mshah.io/fosdem18.html

http://llvm.org/docs/WritingAnLLVMPass.html

139

Here’s homework for
later!

I’m not pulling these
ideas from nowhere!

http://llvm.org/docs/WritingAnLLVMPass.html

www.mshah.io/fosdem18.html

140

Okay, here is our
third pass

It is a FunctionPass
that shows direct

function calls

www.mshah.io/fosdem18.html

141

www.mshah.io/fosdem18.html

142

Find Direct Calls
Added new header: #include "llvm/IR/CallSite.h"

www.mshah.io/fosdem18.html

143

Find Direct Calls
Added new header: #include "llvm/IR/CallSite.h"

A callsite ??

www.mshah.io/fosdem18.html

144

LLVM Docs

● I do not actually know all of the LLVM commands by heart.
● As you start with LLVM, it is a good idea to keep the doxygen documentation

open.
● “googling LLVM ______” will lead you to the correct page most often

○ http://llvm.org/doxygen/classllvm_1_1CallSite.html

http://llvm.org/doxygen/classllvm_1_1CallSite.html

www.mshah.io/fosdem18.html

145

LLVM Docs

● From the documentation you can navigate to the appropriate function and
even the source code

www.mshah.io/fosdem18.html

(Pssst! You have the source code as well)
Here is a sample grep

● Often times grepping through the source code gives you ideas of how to use
instructions

● I myself do not pretend to be compare with the LLVM experts!

146

www.mshah.io/fosdem18.html

147

(continued) Find Direct Calls
Added new header: #include "llvm/IR/CallSite.h"

If our instruction is not a ‘callable’ (i.e. a
function)

www.mshah.io/fosdem18.html

148

(continued) Find Direct Calls
Added new header: #include "llvm/IR/CallSite.h" Find out if our ‘callee’

is a direct function call
(not a function pointer
or anything)

www.mshah.io/fosdem18.html

The Result!

● Simple little function pass
● Now you can use this information to build a data structure

○ The function “F” is the caller, and “f” the callee.
○ Each of these forms an edge and could be put into a graph data structure.
○ Then output static graphs!

149

Bonus Trick: Outputting graphs

150

www.mshah.io/fosdem18.html

LLVM actually provides a pass that can output
control flow graphs
● Install a dot file viewer

○ sudo apt install xdot (for linux)

● Generate a dot file with
○ ./../opt -dot-cfg-only loops.ll > /dev/null

● View dot file with
○ xdot cfg._Z9countDownv.dot

151

www.mshah.io/fosdem18.html

Here is the ‘countdown function’ from loops.pp

152

www.mshah.io/fosdem18.html

Here is the ‘countdown function’ from loops.pp
● You can slowly map each basic

block from the visualization to the
C++ code in this way.

153

www.mshah.io/fosdem18.html

Here is the ‘countdown function’ from loops.pp
● You can slowly map each basic

block from the visualization or
directly to the IR

154

Dynamic Analysis
Goal of Dynamic Analysis: What

information/bugs/performance errors can we uncover
when we run the program.

Pros: Gives us real values
Cons: Instrumentation effects results & Performance 155

Dynamic Analysis
Goal of Dynamic Analysis: What

information/bugs/performance errors can we uncover
when we run the program.

Pros: Gives us real values
Cons: Instrumentation effects results & Performance 156

Why use LLVM for
this?

We can insert/inject
code to monitor or
change behavior of

our code.

www.mshah.io/fosdem18.html

Adding in Functions (For Dynamic Analysis)
● Typically this is done in an ad-hoc fashion

○ Either spreading in ‘printf’ functions everywhere
○ Lots of #define #endif

● If we have our source code, we can inject code as needed.
○ No need to mess up or keep copies of various source versions.

● Fair warning, I am running through these examples fast, but you have the
slides

○ (Lots of source code on slides ahead--I am breaking powerpoint rules!)

157

www.mshah.io/fosdem18.html

Step 1:
Let’s write some code that we want to instrument

158

www.mshah.io/fosdem18.html

Step 1: Write a ‘hook’ or ‘profiling code’
Let’s write some code that we want to instrument

159

Here is a function ‘__initMain’ that will be inserted in our ‘main’ function and print a
message

www.mshah.io/fosdem18.html

Step 1: Generate IR for hook
Now let’s create the intermediate representation of our code.

160

Donzo. Finished. IR is ready

www.mshah.io/fosdem18.html

Step 1: Generate IR for hook
Now let’s create the intermediate representation of our code.

161

Donzo. Finished. IR is ready

This is our function
name. Note it “looks
weird”. It is a mangled
function name.

www.mshah.io/fosdem18.html

Step 2: Lets find the code we want to modify
How about our hello.cpp program. And we already have hello.ll from previous
examples

162

This is the simplest program with one function

www.mshah.io/fosdem18.html

Now time for the Module pass
New headers needed: #include "llvm/IR/Module.h"

163

Why?
1.) To show you a

module pass
2.) It makes a little

more sense (to me)
to search functions
in a module I want
to instrument.

www.mshah.io/fosdem18.html

The Module pass | Setup in 3 parts (in my code)

164

www.mshah.io/fosdem18.html

The Module pass

165

1.) Create a “stub” function

www.mshah.io/fosdem18.html

The Module pass

166

1.) Notice it is using the ‘mangled’ c++
function name

www.mshah.io/fosdem18.html

The Module pass

167

2.) This next chunk of code iterates
through a Module to look at all of the
functions

www.mshah.io/fosdem18.html

The Module pass

168

3.) I am modifying code, so I return
true for this pass

www.mshah.io/fosdem18.html

setupHooks()
This code creates “a placeholder” for our source program. I do not link in my
instrumentation code until the very end.

169

www.mshah.io/fosdem18.html

setupHooks()
This code creates “a placeholder” for our source program. I do not link in my
instrumentation code until the very end.

170

The observation from
setupHooks() is that I
am building up a
‘function’ that returns
void and takes in one
argument

www.mshah.io/fosdem18.html

setupHooks()
This code creates “a placeholder” for our source program. I do not link in my
instrumentation code until the very end.

171

The observation from
setupHooks() is that I
am building up a
‘function’ that returns
void and takes in one
argument

Which is exactly the signature of __initMain

www.mshah.io/fosdem18.html

InstrumentEnterFunction
● Same idea from InstrumentEnterFunction
● I am building up a specific function to insert

172

www.mshah.io/fosdem18.html

InstrumentEnterFunction
● Same idea from InstrumentEnterFunction
● I am building up a specifc function to insert

173

Why not do
something more

simple?

With this approach, I
can push different

values as parameters
based on whatever I

need to do.

www.mshah.io/fosdem18.html

Steps to running function pass number 4!
Get our source code setup by running our pass in.

./../opt -load ./../../lib/LLVMHello.so -hello4 -S < hello.ll > readyToBeHooked.ll

Link in our instrumentation

./../llvm-link readyToBeHooked.ll instrumentation.ll -S -o instrumentDemo.ll

174

www.mshah.io/fosdem18.html

LLVM Tools - llvm-link
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 175

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

www.mshah.io/fosdem18.html

LLVM Tools - llvm-link
1. clang - Clang is the frontend C/C++ compiler (llvm is the backend)

○ Likely you have heard or used Clang even if you did not know it!

2. llvm-as - Takes LLVM IR in assembly form and converts it to bitcode format.
3. llvm-dis - Converts bitcode to text readable llvm assembly
4. llvm-link - Links two or more llvm bitcode files into one file.
5. lli - Directly executes programs bit-code using JIT
6. llc - Static compiler that takes llvm input (assembly or bitcode) and generates

assembly code
7. opt - LLVM analyzer and optimizer which runs certain optimizations and

analysis on files
8. More

○ http://llvm.org/docs/GettingStarted.html#llvm-tools 176

Now that our files are
merged, there is a
declaration and a
definition for our
instrumentation!

http://llvm.org/docs/CommandGuide/lli.html
http://llvm.org/docs/GettingStarted.html#llvm-tools

www.mshah.io/fosdem18.html

LLVM-Link
● Think of this like a ‘linker’ for IR code.
● Sometimes it is useful to link all of your code together, and then run your

optimizations
○ We call this “whole program optimization”

177

www.mshah.io/fosdem18.html

Grand Finale!
Run our linked .ll file (using lli or compile to source)

178

www.mshah.io/fosdem18.html

Grand Finale!
Run our linked .ll file (using lli or compile to source)

179

It works, we
see our
message
before the
“Bonjour” from
hello.cpp!!

www.mshah.io/fosdem18.html

Going Further (Challenges/Project Ideas)
Time permitting:

● Easy
○ Print out function arguments
○ Recover and print metadata and/or Profile Guided Optimization Data with functions
○ Write a python script that ‘llvm-links’ all of your .ll files together.

● Medium
○ Build both a control flow graph and call graph and output to .dot
○ Find Program attributes

■ Add an attribute for any function < 10 instructions, and force it to inline

● Hard/Interesting?
○ Autovectorizing (Find patterns and Insert SIMD instructions)
○ Investigate the “sanitzer” projects. See if you can add interesting printouts.

180

Resources

181

www.mshah.io/fosdem18.html

Resources
● Online Resources

○ The Documentation: http://llvm.org/docs/
○ Developer Meetings: http://llvm.org/devmtg/
○ Downloading and setting up LLVM: http://llvm.org/docs/GettingStarted.html#checkout
○ An introductory guide: http://adriansampson.net/blog/llvm.html
○ Weekly LLVM Newsletter: http://llvmweekly.org/

■ Developers Mailing List: http://lists.llvm.org/mailman/listinfo/llvm-dev
○ IR Web interface: http://ellcc.org/demo/index.cgi
○ LLVM Blog: http://blog.llvm.org/

● Useful Tools to Try
○ Hexdump (hexdump -c some_bitcode.bc)
○ Meld - Tool for diff’ing and comparing files
○ xdot or graphviz - View .dot files

● Other homework
○ https://cseweb.ucsd.edu/classes/sp14/cse231-a/proj1.html 182

http://llvm.org/docs/
http://llvm.org/devmtg/
http://llvm.org/docs/GettingStarted.html#checkout
http://adriansampson.net/blog/llvm.html
http://llvmweekly.org/
http://lists.llvm.org/mailman/listinfo/llvm-dev
http://ellcc.org/demo/index.cgi
http://blog.llvm.org/
https://cseweb.ucsd.edu/classes/sp14/cse231-a/proj1.html

www.mshah.io/fosdem18.html

More Guidance - Your LLVM Syllabus
● Feb, 5 -- Day 1 (or Today?):

https://www.youtube.com/watch?v=a5-WaD8VV38
● Feb, 6 -- Day 2: Official LLVM Youtube channel
● Extend Program Analysis Knowledge:

○ Youtube series on Program Analysis (Some LLVM Lectures!)
■ https://www.youtube.com/playlist?list=PLNC6lmsIySCOPjY8IwKBtD2cqe-MMgIGM

183

https://www.youtube.com/watch?v=a5-WaD8VV38
https://www.youtube.com/channel/UCv2_41bSAa5Y_8BacJUZfjQ
https://www.youtube.com/playlist?list=PLNC6lmsIySCOPjY8IwKBtD2cqe-MMgIGM

Contributing to LLVM

184

www.mshah.io/fosdem18.html

185

https://llvm.org/devmtg/2014-02/slides/ledru-how-to-contribute-to-llvm.pdf

https://llvm.org/devmtg/2014-02/slides/ledru-how-to-contribute-to-llvm.pdf

www.mshah.io/fosdem18.html

Conclusion
● LLVM is an exciting project with a lot of power
● LLVM or its related projects are likely the ‘right’ tool if you are working on

programming languages, performance, or tool building
● If you are still not convinced, your takeaway can still be to look at the

codebase, and see some great engineering with the C++ language.
● It’s big, but should not be scary

○ The difficulty that arises is that it is a lot of ‘new’ things
○ You can do it!

186

Thank You!
@MichaelShah | www.mshah.io

187

Feedback Form https://tinyurl.com/fosdem18llvmintro
(Whether you watched this talk now or in the future!)

https://twitter.com/MichaelShah
http://www.mshah.io
https://tinyurl.com/fosdem18llvmintro

www.mshah.io/fosdem18.html

Make sure we save output of opt
● Something new we are doing with this pass, is that it actually is modifying

code.
● Occasionally you may see this message

● In our case, yes we do want to output the modified bitcode file, but this time
to a new bitcode file.

188

www.mshah.io/fosdem18.html

Some Gotcha’s
● Having trouble with llvm-config?

○ Make sure your PATH variable is updated
○ export PATH=/home/mike/Desktop/llvm/llvm_build/bin/:$PATH

189

www.mshah.io/fosdem18.html

Courses Using LLVM

https://www.cs.utexas.edu/users/lin/cs380c/prog1.pdf

Tour of LLVM Project

https://blog.regehr.org/archives/1453 |
http://www.linux.org/threads/llvm-toolset.6644/

190

https://www.cs.utexas.edu/users/lin/cs380c/prog1.pdf
https://blog.regehr.org/archives/1453
http://www.linux.org/threads/llvm-toolset.6644/

www.mshah.io/fosdem18.html

Useful debugging things
dump() command.

191

www.mshah.io/fosdem18.html

Build your own LLVM language
http://dev.stephendiehl.com/numpile/

192

http://dev.stephendiehl.com/numpile/

www.mshah.io/fosdem18.html

LLVM Backend information
https://jonathan2251.github.io/lbd/funccall.html

193

https://jonathan2251.github.io/lbd/funccall.html

